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Finite Size Scaling in Neural Networks
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We demonstrate that the fraction of pattern sets that can be stored in single- and hidden-layer
perceptrons exhibits finite size scaling. This feature allows one to estimate the critical storage capacity
a. from simulations of relatively small systems. We illustrate this approach by determinirtggether
with the finite size scaling exponent for storing Gaussian patterns in committee and parity machines
with binary couplings and up t& = 5 hidden units. [S0031-9007(96)02100-X]

PACS numbers: 87.10.+e, 02.70.Lq, 05.50.+q, 64.60.Cn

Finite size scaling (FSS) has proven to be a powerwhere, in the case of a CM, the majority rule is imple-
ful method for analyzing phase transitions, which occumented by = >, while, in the case of a PMD = [].
rigorously only in the thermodynamic limit, using simu- A standard single-layer perceptron correspondk te- 1.
lations of systems of finite size [1]. In particular, it has Since the majority rule is somewhat problematic in the
become the prime method for determining numerical valcase of evenk, we will restrict ourselves here to CM
ues of critical coupling parameters and exponents [2].  with K odd.

Phase transitions are known to occur not only in con- A perceptron is able to store a particular set of input
densed matter [3] and percolation systems [2] but also ipatterns(¢5}, u = 1,..., p, if there exists a coupling set
random graphs [4], neural networks [5], and in algorith-{J;;} such that—under the action of Egs. (1) and (2)—
mic problems such as search [6], and the satisfiability o prescribed set of outpu{®*} is generated. It is well
random boolean expressions [7]. Heuristic derivations oknown that for small values ofr = p/N such a set of
FSS rely on the divergence of a correlation length at aouplings can always be found, while for large enough
critical point in the infinite system [2,8]. However, Kirk- « the probability for its existence vanishes. For finite
patrick and Selman [9] have demonstrated recently thagystems the fraction of all possible input-output relations
FSS can also be used efficiently in problems without any{(¢/;, 0*)} of relative sizer that can be stored, which we
intrinsic length scales, such as the connectivity of ranwill call P(«, N) [13], undergoes a smooth transition from
dom graphs and the satisfiability of random boolean exene to zero. However, in the infinite system, it switches
pressions. Abstract neural networks [5] are another clagsom one to zero at the critical storage capaeity
of systems without intrinsic length scale, and we will This behavior, together with FSS, is nicely illustrated
show in this paper that FSS occurs at the transition fronfor the single-layer perceptron with continuous couplings
storable to unstorable pattern set sizes, and that it providesid theé;;, drawn from a Gaussian distribution, where the
a powerful computational method for determining critical exact solution foP(«, N) is known analytically [5,14],
storage capacities.

N-—1 _
We will concentrate on the particular feed-forward P(p/N,N) =2'"7 Z(p ) 1)_ (3)
networks of the perceptron class, namely, multilayer i=0 L

perceptrons withV input neurons,K hidden units, and
a regular treelike connectivityMmodK = 0), see Fig. 1,
which are also known asommitteeand parity machines
(CM, PM) with nonoverlapping receptive fields [10-12].
Input patternséy, k=1,...,K, i =1,...,N/K, are
processed by the following rules: The output of hidden
layer cellk is given by

Or = Sgn<1§hk§ik>, 1)

i=1

Figure 2 (top) showsP(«a,N) for various values ofV.
The common intersection of these curvesaat= 2 is

input layer

hidden

Jir being the coupling between input cell and hidden
unit k£, while the final output is determined by

K
0 = sgn(k(DI ()k), 2) E:"Gtsl Treelike multilayer perceptron witk = 3 hidden
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We will concentrate in the following on perceptrons
with binary couplings/;; = =1, also known as Ising per-
ceptrons. Employing complete enumeration of the cou-
plings for systems up to siz¥ = 30, simulation results
independenbf any learning algorithm are obtained. We
used Gaussian patterns for the results presented in this
contribution. Note that, for binary coupling perceptrons
with a finite number of hidden units, information theory
gives an upper limit for the critical storage capacity of
one, i.e.,a. = 1[12,20].

Figure 3 (top) shows simulation results fét(«, N)
for the case of a single-layer binary coupling perceptron.
Sets of input-output relations were classified as storable
or unstorable by complete enumeration of the coupling
space [21]. Each data point was sampled with atioéit
randomly chosen sets of input-output relations, giving a
relative error of abous%. As in the case of continuous
couplings, Fig. 2, the curves for various system sizes
intersect at the critical storage capacity, here with the
numerical valuex, = 0.8. Figure 3 (bottom) shows the
FIG. 2. Finite size scaling in the single-layer perceptron withS@Me data under rescaling with Eq. (4) and= 1.7.
continuous couplings: (top) Eq. (3), (bottom) finite size scalingAgain, all data points fall onto one scaling curve. Note that
as indicated in the text. the value of the scaling function at the transitigif)) =

0.7, is different from the continuous cagg(0) = 0.5].
noticed immediately. Also, the steepness of the transition Results for the hidden-layer systems of parity and com-
increases with system si2e. mittee type show a behavior qualitatively similar to the

Under FSS, systems of different size behave in arPne presented in Fig. 3 for the single-layer perceptron.
identical way near the transition under a size-dependetWe have collected our results for various valueskofn
rescaling of the control parameter [9], Table 1. As is to be expected,. increases with the intro-

y = (@ — a )NV duction of a hidden layer of neurons. The FSS exponent

(4) v decreases with increasing to about 1.3 and 1.2 for
Necessarily, the common intersection of the transitionCM, and to values about one for PM.

curves observed above corresponds to the critical storage

P(a,N)

capacity a..

Figure 2 (bottom) shows that a rescaling

with » = 2 and a. = 2 indeed lets all transition curves
fall onto a single scaling curve. In this particular case, the
numerical value of the FSS exponenttogether with the

P(a,N)

1 Hoame

0.8

0.6+

analytic form of the scaling function,

) = 5 + g ert(=y/2), ©)

can be derived from the asymptotic behavior of Eq. (3),

P(a,N)—»% + %erf(@@-a)) (6) -

Figure 2 demonstrates moreover that critical storage £
capacityr. and FSS exponent can already be estimated
from systems of relatively small size.

Simulations of neural networks are plagued by the
problem that learning algorithms [5], necessary to deter-
mine coupling sets that solve the storage problem, are not
guaranteed to reach a solution practically, i.e., under re-
alistic time constraints, even if it exists. Closedp the

0.4+

0.2+

-3 -2 -1 0 1 2 3

average learning time diverges [15], a behavior reminding y

one of critical slowing down [3]. The situation is worse FIG. 3. Finite size scaling in the single-layer perceptron with

for systems with binary couplings, since there the usuahinary couplings: (top) before, (bottom) after finite size scaling
learning algorithms are not applicable [16—19]. as indicated in the text.
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TABLE I. Critical storage capacitya,., finite size scaling lytical or simulation results are available at present, to the
exponentr, and transition valuef(0) of scaling functionf, best of our knowledge.

for various binary perceptrons. It has been hypothesized on the basis of replica studies
K a, (SD) v (SD) £(0) (SD) [25] that the storage capacity for binary and Gaussian
patterns is identical. Previous simulation resultsKor=
Single layer 1 seemed to be compatible with this hypothesis and
1 0.796 (0.010) 1.68 (0.09) 0.70 (0.03) with the RSB result reported abover (= 0.83 [16],

a. = 0.833 [17-19], however [27]). Since our results

Committee machine differ significantly from the RSB result, this casts some

3 0.899 (0.008) 1.28 (0.06) 0.49 (0.03) doubt on either this hypothesis, the RSB result, or on the
5 0.932 (0.012) 1.15 (0.08) 0.36 (0.04) interpretation of the simulation results [27]. For the case
Parity machine of storing binary patterns in CM, simuIaFion results _using
complete enumeration have been obtainedKor 3 in
g g-ggg (8-882) é-gg (8-8? 8-3; (8-82) [12], together with analytical results fat = 3 (“a. =~
4 0.999 Eo'ooag 0.97 go'o4g 0.12 Eo'ozg 0929, and for K — = ("a. = 0.95%), using a replica
5 0.983 (0.009) 0.91 (0.04) 0.07 (0.01) symmetric (RS) ansatz. Although our simulation results

for CM differ somewhat, they can still be considered
An order to perform a reproducible and unambigious errorstatistically compatible with those values, in contrast to
analysis of the data, we used theotstrapmethod [22]: About  the K = | case discussed above. This result supports the
10® bootstrap samples were drawn from the original data for a'hypothesis of [12] that a RS ansatz might be sufficient
system sizes, and, for each such sampleand » were deter- g5, cM, and suggests that the hypothesis of an identical

mined together by minimizing the mutual mean squared devia- for storina binary and Gaussian patterns miaht hold at
tion of the interpolating scaling curves; the presented values and ¢ 9 y P 9
gast for CM.

the estimated errors are the means and standard deviations, ; . . .
In closing, we would like to again draw attention

spectively, ofa., », andf(0) in the set of bootstrap samples. .

to the fact that the values for(0) differ strongly

between various perceptrons. In particular, with the

The most surprising results are those for PM. Alreadysingle exception of the CM withk = 3, they differ
a system withK = 2 hidden units exhibits a storage considerably froml/2. On the other hand, the relation
capacity extremely close to the theoretical limit, andP(aos5(N),N) = 0.5 has often been the basis of an
Table | shows that there is practically no improvementextrapolation to the infinite system critical parameter from
in increasingk. In application situations, storing patterns simulations of finite systems [24,28]. If we defipgs by
has to be done using finite size perceptrons. Since the F§%yos) = 0.5, then
scaling functionf(y) describes the asymptotic behavior
of the fraction of storable pattern®(a, N), arounde,, aos(N) = a. + yosN~ /", (7)
the critical capacity has to be considered together with
f(y) when assessing the quality of a particular systemlogether with the fact that the FSS exponendeviates
Note that f(y) decreases considerably witki in the from one particularly fork = 1 and for CM, this fea-
critical region for PM as well as CM, se&0) in Table I.  ture emphasizes the need for an extrapolation nonlinear,
These features suggest that a PM with= 2 is already instead of linear, inl /N to correctly obtain the thermo-
the bespractical binary perceptron for storing continuous dynamic limit value ofes(N) [29], and it may be the
patterns. source of some problems encountered in earlier simula-
Simulation studies of the single-layer binary percep-ion studies [23,24].

tron have been performed before for the problems of stor- The above results demonstrate that the FSS ansatz not
ing binary [16—19,23,24], and Gaussian patterns [23,25nly offers a new and powerful computational approach
using various approaches, and not always leading to codor evaluating the critical storage capacities of binary
clusive results. Our result for, differs significantly —Perceptrons, but also allows a detailed view on the storage
from the analytical result of Ref. [26Je. = 0.833) ob-  properties in the critical region. We believe that it will
tained using a first order replica symmetry breakingProve valuable in analyzing the properties of a wide
ansatz (RSB), but could be considered compatible—Vvariety of binary perceptron topologies.
within error bars—with the simulation result of Ref. [25]
("a. = 0.82” [27]). This discrepancy between the ana-
lytical approximation and our simulation result sug- *Electronic address: walter.nadler@uni-tuebingen.de

gests—provided finite size scaling holds—that the first  fgjectronic address: wolfgang.fink@uni-tuebingen.de
order RSB is still insufficient for a correct analytical treat- [1] Finite Size Scaling and Numerical Simulations of Statisti-

ment of theK = 1 case, despite the claims in [26]. For cal Systemsedited by V. Privman (World Scientific, Sin-
binary CM and PM storing Gaussian patterns, no ana-  gapore, 1990).

557



VOLUME 78, NUMBER 3 PHYSICAL REV

IEW LETTERS 20 ANUARY 1997

[2] D. Stauffer and A. Aharonylntroduction to Percolation
Theory(Taylor & Francis, London, 1992).
[3] Phase Transitions and Critical Phenomenedited by

C. Domb and M.S. Green (Academic, London, 1972—

1976), Vols. 1-6;ibid., edited by C. Domb and J.L.
Lebowitz (Academic, London, 1983-1992), Vols. 7-15.
E. M. Palmer, Graphical Evolution(Wiley, New York,
1985).

J. Hertz, A. Krogh, and R.G. Palmeintroduction to

the Theory of Neural ComputatiofAddison-Wesley,

Reading, MA, 1991).

C. Williams and T. Hogg, Comput. Intel®, 221 (1993).

D. Mitchell, B. Selman, and H. J. Levesqueroceedings

of the 10th International Conference on Atrtificial Intelli-

gence(AAAI Press, Menlo Park, CA, 1992), p. 459.

[8] S. Kirkpatrick and R.H. Swendsen, Commun. AC28,

363 (1985).

[9] S. Kirkpatrick and B. Selman, Scien@84, 1297 (1994).
[10] G.J. Mitchison and R.N. Durbin, Biol. Cybern&0, 345
(1989).

E. Barkai, D. Hansel, and I. Kanter, Phys. Rev. Léf,

2312 (1990).

[12] E. Barkai, D. Hansel, and H. Sompolinsky, Phys. Rev. A
45, 4146 (1992).

[13] We note thatP(«a,N)—being the probability to find,
in the ensemble of all sets of input-output relations of
relative sizea, a set of relations that can be stored
in a perceptron of sizeV—differs considerably from
the coupling space volumé&/(a,N) that is usually

[4]
[5]

[6]
[7]

(11]

determined in analytical calculations, e.g., based on the
replica approach (see, for example, Ref. [5]). The latter
is a fluctuating quantity, and care has to be taken with

its ensemble averagingn[V) vs In(V)]. This does not
apply to P(a,N). Moreover, P(a,N) is actually the
more fundamental observable for the storage problem [5]
However, a lack of the ability to calculate it analytically

[14] T.M. Cover, IEEE Trans. Electron. Compuid4, 326
(1965).

[15] A. Priel, M. Blatt, T. Grossmann, E. Domany, and
I. Kanter, Phys. Rev. B0, 577 (1994).

[16] H.M. Kéhler, J. Phys. A23, L1265 (1990).

[17] H. Horner, Z. Phys. BB6, 291 (1992).

[18] H. Horner, Physica (Amsterdar@D0A, 552 (1993).

[19] H.-K. Patel, Z. Phys. B91, 257 (1993).

[20] E. Gardner and B. Derrida, J. Phys.24, 257 (1988).

[21] A more detailed account of the computational methods
used will be given elsewhere; W. Fink and W. Nadler (to
be published).

[22] B. Efron and R.J. TibshiraniAn Introduction to the
Bootstrap(Chapman and Hall, London, 1993).

[23] B. Derrida, R. B. Griffiths, and A. Priigel-Bennett, J. Phys.
A 24, 4907 (1991).

[24] I. Kanter and M. Shvartser, Physica (Amsterda®@pA,
670 (1993).

[25] W. Krauth and M. Opper, J. Phys. 22, L519 (1989).

[26] W. Krauth and M. Mézard, J. Phys. (Francg), 3057
(1989).

[27] Note that most previous simulation results are distin-

guished by a complete lack of an estimate for the error

due to Monte Carlo sampling of the extrapolated value
for a.. On the other hand, the minuscule error reported
in [19] (even smaller than that for several individual data
points used in the extrapolation) is hard to believe. Note
also that, when learning algorithms are employed in simu-
lations, systematic errors may arise, and further analysis
has to be supplied with some theory on its performance
for large system sizes [17,18]. Otherwise, the choice of
what system sizes to include in extrapolations becomes

somewhat arbitrary (as in [16,19]).

[28] E. Eisenstein and |. Kanter, Europhys. Lefl, 501

. (1993).

[29] This problem was already noted in Ref. [9].

for many interesting systems has led to some neglect of

this important observable in the current literature.

558



