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We demonstrate that the fraction of pattern sets that can be stored in single- and hidden-la
perceptrons exhibits finite size scaling. This feature allows one to estimate the critical storage capa
ac from simulations of relatively small systems. We illustrate this approach by determiningac, together
with the finite size scaling exponentn, for storing Gaussian patterns in committee and parity machines
with binary couplings and up toK  5 hidden units. [S0031-9007(96)02100-X]
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Finite size scaling (FSS) has proven to be a pow
ful method for analyzing phase transitions, which occ
rigorously only in the thermodynamic limit, using simu
lations of systems of finite size [1]. In particular, it ha
become the prime method for determining numerical v
ues of critical coupling parameters and exponents [2].

Phase transitions are known to occur not only in co
densed matter [3] and percolation systems [2] but also
random graphs [4], neural networks [5], and in algori
mic problems such as search [6], and the satisfiability
random boolean expressions [7]. Heuristic derivations
FSS rely on the divergence of a correlation length a
critical point in the infinite system [2,8]. However, Kirk
patrick and Selman [9] have demonstrated recently
FSS can also be used efficiently in problems without a
intrinsic length scales, such as the connectivity of ra
dom graphs and the satisfiability of random boolean
pressions. Abstract neural networks [5] are another c
of systems without intrinsic length scale, and we w
show in this paper that FSS occurs at the transition fr
storable to unstorable pattern set sizes, and that it prov
a powerful computational method for determining critic
storage capacities.

We will concentrate on the particular feed-forwa
networks of the perceptron class, namely, multilay
perceptrons withN input neurons,K hidden units, and
a regular treelike connectivity (NmodK  0), see Fig. 1,
which are also known ascommitteeand parity machines
(CM, PM) with nonoverlapping receptive fields [10–12
Input patternsjik , k  1, . . . , K, i  1, . . . , NyK, are
processed by the following rules: The output of hidd
layer cellk is given by

Ok  sgn

µNyKX
i1

Jikjik

∂
, (1)

Jik being the coupling between input cellik and hidden
unit k, while the final output is determined by

O  sgn
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, (2)
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where, in the case of a CM, the majority rule is impl
mented by

J
;

P
, while, in the case of a PM,

J
;

Q
.

A standard single-layer perceptron corresponds toK  1.
Since the majority rule is somewhat problematic in th
case of evenK, we will restrict ourselves here to CM
with K odd.

A perceptron is able to store a particular set of inp
patternshjm

ikj, m  1, . . . , p, if there exists a coupling se
hJikj such that—under the action of Eqs. (1) and (2)
a prescribed set of outputshOmj is generated. It is well
known that for small values ofa  pyN such a set of
couplings can always be found, while for large enou
a the probability for its existence vanishes. For fini
systems the fraction of all possible input-output relatio
hsjm

ik , Omdj of relative sizea that can be stored, which we
will call Psa, Nd [13], undergoes a smooth transition from
one to zero. However, in the infinite system, it switch
from one to zero at the critical storage capacityac.

This behavior, together with FSS, is nicely illustrate
for the single-layer perceptron with continuous couplin
and thejik drawn from a Gaussian distribution, where th
exact solution forPsa, Nd is known analytically [5,14],

Ps pyN , Nd  212p
N21X
i0

µ
p 2 1

i

∂
. (3)

Figure 2 (top) showsPsa, Nd for various values ofN.
The common intersection of these curves ata  2 is

FIG. 1. Treelike multilayer perceptron withK  3 hidden
units.
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FIG. 2. Finite size scaling in the single-layer perceptron wi
continuous couplings: (top) Eq. (3), (bottom) finite size scalin
as indicated in the text.

noticed immediately. Also, the steepness of the transit
increases with system sizeN .

Under FSS, systems of different size behave in
identical way near the transition under a size-depend
rescaling of the control parameter [9],

y  sa 2 acdN1yn . (4)

Necessarily, the common intersection of the transiti
curves observed above corresponds to the critical stor
capacity ac. Figure 2 (bottom) shows that a rescalin
with n  2 and ac  2 indeed lets all transition curves
fall onto a single scaling curve. In this particular case, t
numerical value of the FSS exponentn, together with the
analytic form of the scaling function,

fsyd 
1
2

1
1
2

erfs2yy2d , (5)

can be derived from the asymptotic behavior of Eq. (3),

Psa, Nd !
1
2

1
1
2

erf

√s
N
2a

s2 2 ad

!
. (6)

Figure 2 demonstrates moreover that critical stora
capacityac and FSS exponentn can already be estimated
from systems of relatively small size.

Simulations of neural networks are plagued by th
problem that learning algorithms [5], necessary to det
mine coupling sets that solve the storage problem, are
guaranteed to reach a solution practically, i.e., under
alistic time constraints, even if it exists. Close toac the
average learning time diverges [15], a behavior remindi
one of critical slowing down [3]. The situation is wors
for systems with binary couplings, since there the usu
learning algorithms are not applicable [16–19].
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We will concentrate in the following on perceptrons
with binary couplingsJik  61, also known as Ising per-
ceptrons. Employing complete enumeration of the cou
plings for systems up to sizeN  30, simulation results
independentof any learning algorithm are obtained. We
used Gaussian patterns for the results presented in t
contribution. Note that, for binary coupling perceptron
with a finite number of hidden units, information theory
gives an upper limit for the critical storage capacity o
one, i.e.,ac # 1 [12,20].

Figure 3 (top) shows simulation results forPsa, Nd
for the case of a single-layer binary coupling perceptro
Sets of input-output relations were classified as storab
or unstorable by complete enumeration of the couplin
space [21]. Each data point was sampled with about103

randomly chosen sets of input-output relations, giving
relative error of about3%. As in the case of continuous
couplings, Fig. 2, the curves for various system size
intersect at the critical storage capacity, here with th
numerical valueac ø 0.8. Figure 3 (bottom) shows the
same data under rescaling with Eq. (4) andn ø 1.7.
Again, all data points fall onto one scaling curve. Note tha
the value of the scaling function at the transition,fs0d ø
0.7, is different from the continuous casef fs0d  0.5g.

Results for the hidden-layer systems of parity and com
mittee type show a behavior qualitatively similar to the
one presented in Fig. 3 for the single-layer perceptro
We have collected our results for various values ofK in
Table I. As is to be expected,ac increases with the intro-
duction of a hidden layer of neurons. The FSS expone
n decreases with increasingK to about 1.3 and 1.2 for
CM, and to values about one for PM.

FIG. 3. Finite size scaling in the single-layer perceptron wit
binary couplings: (top) before, (bottom) after finite size scalin
as indicated in the text.
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TABLE I. Critical storage capacityac, finite size scaling
exponentn, and transition valuefs0d of scaling functionf,
for various binary perceptrons.

K ac sSDd n sSDd fs0d sSDd

Single layer

1 0.796 (0.010) 1.68 (0.09) 0.70 (0.03

Committee machine

3 0.899 (0.008) 1.28 (0.06) 0.49 (0.03
5 0.932 (0.012) 1.15 (0.08) 0.36 (0.04

Parity machine

2 0.992 (0.005) 1.02 (0.04) 0.37 (0.02
3 0.998 (0.005) 0.93 (0.03) 0.22 (0.02
4 0.999 (0.008) 0.97 (0.04) 0.12 (0.02
5 0.983 (0.009) 0.91 (0.04) 0.07 (0.01

aIn order to perform a reproducible and unambigious err
analysis of the data, we used thebootstrapmethod [22]: About
103 bootstrap samples were drawn from the original data for
system sizes, and, for each such sample,ac and n were deter-
mined together by minimizing the mutual mean squared dev
tion of the interpolating scaling curves; the presented values a
the estimated errors are the means and standard deviations
spectively, ofac, n, andfs0d in the set of bootstrap samples.

The most surprising results are those for PM. Alrea
a system withK  2 hidden units exhibits a storage
capacity extremely close to the theoretical limit, an
Table I shows that there is practically no improveme
in increasingK. In application situations, storing pattern
has to be done using finite size perceptrons. Since the F
scaling functionfs yd describes the asymptotic behavio
of the fraction of storable patterns,Psa, Nd, aroundac,
the critical capacity has to be considered together w
fs yd when assessing the quality of a particular syste
Note that fs yd decreases considerably withK in the
critical region for PM as well as CM, seefs0d in Table I.
These features suggest that a PM withK  2 is already
the bestpractical binary perceptron for storing continuou
patterns.

Simulation studies of the single-layer binary perce
tron have been performed before for the problems of st
ing binary [16–19,23,24], and Gaussian patterns [23,2
using various approaches, and not always leading to c
clusive results. Our result forac differs significantly
from the analytical result of Ref. [26]sac  0.833d ob-
tained using a first order replica symmetry breakin
ansatz (RSB), but could be considered compatible
within error bars—with the simulation result of Ref. [25
(“ac ø 0.82” [27]). This discrepancy between the ana
lytical approximation and our simulation result sug
gests—provided finite size scaling holds—that the fir
order RSB is still insufficient for a correct analytical trea
ment of theK  1 case, despite the claims in [26]. Fo
binary CM and PM storing Gaussian patterns, no an
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lytical or simulation results are available at present, to th
best of our knowledge.

It has been hypothesized on the basis of replica studi
[25] that the storage capacity for binary and Gaussia
patterns is identical. Previous simulation results forK 
1 seemed to be compatible with this hypothesis an
with the RSB result reported above (ac  0.83 [16],
ac  0.833 [17–19], however [27]). Since our results
differ significantly from the RSB result, this casts some
doubt on either this hypothesis, the RSB result, or on th
interpretation of the simulation results [27]. For the cas
of storing binary patterns in CM, simulation results using
complete enumeration have been obtained forK  3 in
[12], together with analytical results forK  3 (“ac ø
0.92”), and for K ! ` (“ac ø 0.95”), using a replica
symmetric (RS) ansatz. Although our simulation result
for CM differ somewhat, they can still be considered
statistically compatible with those values, in contrast t
theK  1 case discussed above. This result supports th
hypothesis of [12] that a RS ansatz might be sufficien
for CM, and suggests that the hypothesis of an identic
ac for storing binary and Gaussian patterns might hold a
least for CM.

In closing, we would like to again draw attention
to the fact that the values forfs0d differ strongly
between various perceptrons. In particular, with th
single exception of the CM withK  3, they differ
considerably from1y2. On the other hand, the relation
Psssa0.5sNd, Nddd  0.5 has often been the basis of an
extrapolation to the infinite system critical parameter from
simulations of finite systems [24,28]. If we definey0.5 by
fs y0.5d  0.5, then

a0.5sNd  ac 1 y0.5N21yn . (7)

Together with the fact that the FSS exponentn deviates
from one particularly forK  1 and for CM, this fea-
ture emphasizes the need for an extrapolation nonlinea
instead of linear, in1yN to correctly obtain the thermo-
dynamic limit value ofa0.5sNd [29], and it may be the
source of some problems encountered in earlier simul
tion studies [23,24].

The above results demonstrate that the FSS ansatz
only offers a new and powerful computational approac
for evaluating the critical storage capacities of binary
perceptrons, but also allows a detailed view on the stora
properties in the critical region. We believe that it will
prove valuable in analyzing the properties of a wide
variety of binary perceptron topologies.

*Electronic address: walter.nadler@uni-tuebingen.de
†Electronic address: wolfgang.fink@uni-tuebingen.de
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